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g The Question A
How to measure the generalization performance of a learning algorithms when the risk measure is not
the standard expected risk?
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g Motivation A

The mean performance of an algorithm in a given setting may not be the best objective! This includes
applications where mistakes mean disastrous outcomes; this may be the case, for example, when dealing

Qvith medical, environmental, or sensitive engineering tasks. y
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Overview of the Contributions

Motivated by the idea of protecting against the “worst” events in a learning setting, we consider the sta-
tistical learning setting, where the objective is the CVaR of a loss instead the expectation.

We derive a tight PAC-Bayesian generalization bound for CVaR.

We also derive state-of-the-art concentration inequalities for CVaR for bounded as well as unbounded

\random variables with sub-Gaussian or sub-Exponential distributions. y
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Main Contribution

Our main contribution is a PAC-Bayesian bound for algorithms which optimize the CVaR of a loss.

Theorem 1 (Informal). Let « € (0,1). Given an algorithm which outputs a distribution p on H based on i.i.d. sam-
ples 7., we have, with high probability,

CVaR,[¢(p, Z)] < CVaRy + ¢ e

CVaR, - KL =~ (KL) , 1)
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where c is a universal constant; KL .= KL(p||00); 0o is a prior distribution on H (before seeing the data); and CVaR,
is a consistent estimator of CVaR, [£(0,Z)].

e This bound is on par with state-of-the-art bounds for the standard expected risk, where the square-root
error term vanishes when the empirical risk is small.

e We also achieve the optimal dependence in the quantile level « as it appears inside the square-root error
_ term; applying uniform convergence arguments result in « appearing outside this term. y

a New Tight Concentration Inequalities for CVaR A

As a by-product of our analysis, we derive new concentration inequalities for both bound and unbounded
random variables.
e For a bound random variable Z € |0, 1|, we have, for all &, € (0, 1), with probability at least 1 — 24,
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This bound has the optimal dependence in « as it appears inside the dominant square-root terms. It also
replaces the range of Z (in this case 1) inside these terms by CVaR, |Z] < 1.
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CVaR.[Z] — CVaR,|Z] < \/
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e We also derive new concentration inequalities for the CVaR of random variables with sub-Gaussian or

. CVaR,[X] := E[X|X > Var,]

a The Setting

We consider the statistical learning setting where we have
e A bounded loss function ¢ : H x Z — |0, 1], where H is an hypothesis space, and Z is a data space. For
example, the square loss: £(h, (x,v)) = (y — h(x))?,z = (x,v).
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e Adataset D, = {Z;, = (X;,Y;) € Z:i € |n]}, where Z1,...,Z, are sampled i.i.d. from an unknown
distribution P.

e A learning algorithm which takes in D, and outputs a distribution p on H.

e A risk measure R {ﬁEh,\,p (h,Z )]} ; this is typically the expected risk E.p {ﬁEth, l(h,Z )]} , but we are
interested in CVaR, [ZE nplE(R, Z) ]} .

_ sub-exponential distributions (see pre-print for more details). D

: Key Idea: A Reduction to the Expected Risk A

The key idea behind our results involves reducing the problem of estimating CVaR to that of estimating
the standard expectation. In particular, we show that for a real random variable Z and « € (0, 1), one can

construct a function ¢: R — IR such that the auxiliary variable Y = ¢(Z) satisfies
1. ElY] =E|[g(Z)] = CVaR,|Z|.

2. Fori.i.d. copies Z1.,, of Z, the i.i.d. random variables Y1 := ¢(Z1),..., Y, := g(Z,) satisty
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- ) Yi < CVaRy[Z](1 +ey), where ey =O(a/2n"1/?), (3)
1=1

with high probability.
Thus, due to these two points, bounding the difference E|Y| — % " 1Y, is sufficient to obtaining a con-

centration bound for CVaR. To this end, since Y7, ..., Y, are i.i.d., one can apply standard concentration
inequalities, which are available whenever Y is sub-Gaussian or sub-exponential. Furthermore, the way
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we construct ¢ ensures that Y inherits these properties from Z. (See pre-print for more details.) y
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