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The Question
How to measure the generalization performance of a learning algorithms when the risk measure is not
the standard expected risk?

Motivation
The mean performance of an algorithm in a given setting may not be the best objective!

Motivation
The mean performance of an algorithm in a given setting may not be the best objective! This includes
applications where mistakes mean disastrous outcomes; this may be the case, for example, when dealing
with medical, environmental, or sensitive engineering tasks.

Overview of the Contributions
Motivated by the idea of protecting against the “worst” events in a learning setting, we consider the sta-
tistical learning setting, where the objective is the CVaR of a loss instead the expectation.

We derive a tight PAC-Bayesian generalization bound for CVaR.

We also derive state-of-the-art concentration inequalities for CVaR for bounded as well as unbounded
random variables with sub-Gaussian or sub-Exponential distributions.

The Conditional Value at Risk (CVaR)

The Setting
We consider the statistical learning setting where we have
• A bounded loss function ` : H×Z → [0, 1], whereH is an hypothesis space, and Z is a data space. For

example, the square loss: `(h, (x, y)) = (y− h(x))2, z = (x, y).

• A data set Dn := {Zi = (Xi, Yi) ∈ Z : i ∈ [n]}, where Z1, . . . , Zn are sampled i.i.d. from an unknown
distribution P.

• A learning algorithm which takes in Dn and outputs a distribution ρ̂ onH.

• A risk measure R
[
Eh∼ρ̂[`(h, Z)]

]
; this is typically the expected risk EZ∼P

[
Eh∼ρ̂[`(h, Z)]

]
, but we are

interested in CVaRα

[
Eh∼ρ̂[`(h, Z)]

]
.

Main Contribution
Our main contribution is a PAC-Bayesian bound for algorithms which optimize the CVaR of a loss.

Theorem 1 (Informal). Let α ∈ (0, 1). Given an algorithm which outputs a distribution ρ̂ onH based on i.i.d. sam-
ples Z1:n, we have, with high probability,

CVaRα[`(ρ̂, Z)] ≤ ĈVaRα + c

√
ĈVaRα · KL

αn
+ Õ

(
KL
αn

)
, (1)

where c is a universal constant; KL := KL(ρ̂‖ρ0); ρ0 is a prior distribution onH (before seeing the data); and ĈVaRα

is a consistent estimator of CVaRα[`(ρ̂, Z)].

• This bound is on par with state-of-the-art bounds for the standard expected risk, where the square-root
error term vanishes when the empirical risk is small.

• We also achieve the optimal dependence in the quantile level α as it appears inside the square-root error
term; applying uniform convergence arguments result in α appearing outside this term.

New Tight Concentration Inequalities for CVaR
As a by-product of our analysis, we derive new concentration inequalities for both bound and unbounded
random variables.
• For a bound random variable Z ∈ [0, 1], we have, for all α, δ ∈ (0, 1), with probability at least 1− 2δ,

CVaRα[Z]− ĈVaRα[Z] ≤

√
12CVaRα[Z] · ln 1

δ

5αn
∨

3 ln 1
δ

αn
+ CVaRα[Z]

√ ln 1
δ

2αn
+

ln 1
δ

3αn

 . (2)

This bound has the optimal dependence in α as it appears inside the dominant square-root terms. It also
replaces the range of Z (in this case 1) inside these terms by CVaRα[Z] ≤ 1.

• We also derive new concentration inequalities for the CVaR of random variables with sub-Gaussian or
sub-exponential distributions (see pre-print for more details).

Key Idea: A Reduction to the Expected Risk
The key idea behind our results involves reducing the problem of estimating CVaR to that of estimating
the standard expectation. In particular, we show that for a real random variable Z and α ∈ (0, 1), one can
construct a function g : R→ R such that the auxiliary variable Y = g(Z) satisfies
1. E[Y] = E[g(Z)] = CVaRα[Z].

2. For i.i.d. copies Z1:n of Z, the i.i.d. random variables Y1 := g(Z1), . . . , Yn := g(Zn) satisfy

1
n

n

∑
i=1

Yi ≤ ĈVaRα[Z](1 + εn), where εn = O(α−1/2n−1/2), (3)

with high probability.
Thus, due to these two points, bounding the difference E[Y]− 1

n ∑n
i=1 Yi, is sufficient to obtaining a con-

centration bound for CVaR. To this end, since Y1, . . . , Yn are i.i.d., one can apply standard concentration
inequalities, which are available whenever Y is sub-Gaussian or sub-exponential. Furthermore, the way
we construct g ensures that Y inherits these properties from Z. (See pre-print for more details.)
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