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Contribution
We derive a new second-order (PAC-Bayesian) generalization bound.
The key tool behind the bound is a new empirical Bernstein concen-
tration inequality.

Abstract
Standard PAC-Bayesian bounds contain a

√
Ln ·KL /n term which

dominates unless Ln, the empirical error, vanishes. We managed to
replace Ln by a term Vn which vanishes whenever the employed
learning algorithm is sufficiently stable. The key novelties are:

Informed Priors: We split the data in two and learn a prior from each.
The bound is small when the priors are close (i.e. stable algorithm).

Online Estimators: Our bound has a second order term which is in
the form of a sum of (squared) errors incurred by online estimators.

Connection with Excess Risks: We connect our new PAC-Bayesian
bound with excess risks under a Bernstein condition.

New Concentration Inequality: The key tool we use is a new con-
centration inequality which is like Bernstein’s but with X2 outside
the E.

Setting and Notation
We consider Z1, . . . , Zn i.i.d. random variable in Z , with Z1 ∼ D. Let
H be a hypothesis set and ` : H× Z → [0, b], b > 0, be a loss such
that `h(Z) := `(h, Z). For h ∈ H, we denote its risk by

L(h) := EZ∼D[`h(Z)],

and its empirical risk by

Ln(h) :=
1
n

n

∑
i=1

`h(Zi).

For a distribution P onH, we write

L(P) := Eh∼P[L(h)] and Ln(P) := Eh∼P[Ln(h)].

For m ∈ [n] and random variables Z1, . . . , Zn, we denote Z≤m :=
(Z1, . . . , Zm) and Z<m := Z≤m−1, with Z≤0 = ∅. Similarly, Z≥m :=
(Zm, . . . , Zn) and Z>m := Z≥m+1, with Z≥n+1 = ∅.

A learning algorithm is a map P :
⋃n

i=1 Z i → P(H), and an estimator
is a map ĥ :

⋃n
i=1 Z i → H. We will abbreviate P(Z≤n) ∈ P(H) to Pn,

and denote P0 any prior distribution, with the convention P(∅) := P0.

With a slight abuse of notation, for m ∈ [n] and estimator ĥ, we
denote ĥ≤m := ĥ(Z≤m), ĥ<m := ĥ(Z<m), ĥ≥m := ĥ(Z≥m), and
ĥ>m := ĥ(Z>m).

Standard PAC-Bayesian Bounds
Both existing state-of-the-art PAC-Bayesian bounds and ours essen-
tially take the following form; there exists constants P,A,C ≥ 0, and a
function εδ,n, logarithmic in 1/δ and n, such that for all δ ∈]0, 1[, with
probability at least 1− δ over Z≤n, we have,

L(Pn)− Ln(Pn) ≤ P ·
√

Rn · (COMPn + εδ,n)

n
+A · COMPn + εδ,n

n

+ C ·
√

R′n · εδ,n

n
, (1)

For most bounds, Rn = Ln(Pn), COMPn = KL(Pn||P0), and R′n =
0. For the Tolstikhin and Seldin’s empirical Bernstein bound Rn =
1/n ·Eh∼Pn [∑

n
i=1(`h(Zi)− Ln(Pn))2] is the empirical variance.

For our bound, we have Rn = Vn and R′n = V′n, where

COMPn = KL(Pn‖P(Z≤m)) + KL(Pn‖P(Z>m)), (2)

V′n :=
1
n

m

∑
i=1

`ĥ>i
(Zi)

2 +
1
n

n

∑
j=m+1

`ĥ<j
(Zj)

2, (3)

Vn :=
1
n

E
h∼Pn

[
m

∑
i=1

(`h(Zi)− `ĥ>i
(Zi))

2 +
n

∑
j=m+1

(`h(Zj)− `ĥ<j
(Zj))

2

]
.

Informed Priors and Stability

We managed to replace the typical KL(Pn||P0) term in other bounds
by the COMPn in (2); we are essentially using each half of the data to
build “informed priors”; in this case, P(Z≤m) and P(Z>m).

When the algorithm P is sufficiently stable, COMPn � KL(Pn||P0).

Other bounds can also be applied in a way to replace the KL term by
the COMPn in (2): e.g., an “informed” Maurer’s bound becomes:

kl(L(Pn), Ln(Pn)) ≤
COMPn + ln 4

√
m(n−m)

δ

n
, (4)

with probability at least 1− δ, for any fixed δ ∈]0, 1[ and m ∈ [0..n].

A Bound Based on Online Estimators
Our bound is based on the errors of the online estimators (ĥ>i) and
(ĥ<j) which converge to the final (ĥ≤n) based on the full sample.

If Pn is concentrated around ĥ≤n; `ĥ<j
(Zj) ' `ĥ≤n

(Zj), m < j ≤ n;

and `ĥ>i
(Zi) ' `ĥ≤n

(Zi), 1 ≤ i ≤ m, then Vn ' 0, leaving in our
bound only the lower order term O(COMPn/n) and the complexity-
free term O(

√
V′n/n). (The latter is of order O(

√
L(Pn)/n) w.h.p.)

Relation to the Excess Risk
Unlike other PAC-Bayesian bounds, ours can be related to excess risk
bounds under the Bernstein condition which characterizes the “easi-
ness” of the learning problem:

Definition 1 (Bernstein Condition). A learning problem satisfies the
(β, B)-Bernstein condition, for β ∈ [0, 1] and B > 0, if for all h ∈ H,

E
Z∼D

[(`h(Z)− `h∗(Z))2] ≤ B · E
Z∼D

[`h(Z)− `h∗(Z)]β,

where h∗ ∈ arg infh∈H EZ∼D[`h(Z)] is a risk minimizer within clH.

Theorem 1 (Informal). Let m = dn/2e. Under a (β, B)-Bernstein con-
dition, for any learning algorithm P and estimator ĥ such that ĥ>i = ĥ>m

and ĥ<j = ĥ≤m, for 1 ≤ i ≤ m < j ≤ n, the term
√

Vn ·COMPn
n is of order

L̄(Pn) + L̄(ĥ>m) + L̄(ĥ≤m) + (COMPn/n)
1

2−β (log-factors omitted)

with high probability, where L̄(·) := L(·)− L(h∗) is the excess risk.

A New Concentration Inequality
Our new PAC-Bayesian bound is based on the following new concen-
tration inequality:

Lemma 1. [Key result: un-expected Bernstein] Let X ∼ D be a
random variable bounded from above by b > 0 almost surely, and let
ϑ(u) := (− ln(1− u)− u)/u2. For all 0 < η < 1/b, we have (a)

E
[
eη(E[X]−X)−ηc·X2

]
≤ 1, for all c ≥ η · ϑ(ηb). (5)

(b) the result is tight: if c < η · ϑ(ηb), then ∃D, for which (5) breaks.

Lemma 1 is reminiscent of the following slight variation of Bernstein’s
inequality; let X be any random variable bounded from below by −b,
and let κ(x) := (ex − x− 1)/x2. For all η > 0, we have

E
[
eη(E[X]−X)−ηc·E[X2]

]
≤ 1, for all c ≥ η · κ(ηb). (6)

Note that the un-expected Bernstein Lemma 1 has the X2 lifted out
of the expectation.

Conclusion and Future Work
The main goal of this paper was to introduce a new PAC-Bayesian
bound based on a new proof technique. In future work, we plan to
put the bound to real practical use by applying it to deep neural net-
works.


