PAC-Bayes Un-Expected Bernstein Inequality

Zakaria Mhammedi

Contribution

We derive a new **second-order** (PAC-Bayesian) generalization bound. The key tool behind the bound is a new empirical Bernstein concentration inequality.

Abstract

Standard PAC-Bayesian bounds contain a $\sqrt{L_n \cdot \text{KL} / n}$ term which dominates unless L_n , the empirical error, vanishes. We managed to **replace** L_n by a term V_n which **vanishes** whenever the employed learning algorithm is **sufficiently stable**. The **key novelties** are:

Informed Priors: We split the data in two and learn a prior from each. The bound is small when the priors are close (i.e. stable algorithm).

Online Estimators: Our bound has a second order term which is in the form of a sum of (squared) errors incurred by online estimators.

Connection with Excess Risks: We connect our new PAC-Bayesian bound with **excess risks** under a Bernstein condition.

New Concentration Inequality: The key tool we use is a new **concentration inequality** which is like Bernstein's but with X² outside the \mathbb{E} .

Setting and Notation

We consider Z_1, \ldots, Z_n i.i.d. random variable in \mathcal{Z} , with $Z_1 \sim \mathbf{D}$. Let \mathcal{H} be a hypothesis set and $\ell : \mathcal{H} \times \mathcal{Z} \rightarrow [0, b], b > 0$, be **a loss** such that $\ell_h(Z) := \ell(h, Z)$. For $h \in \mathcal{H}$, we denote its **risk** by

$$L(h) \coloneqq \mathbb{E}_{Z \sim \mathbf{D}}[\ell_h(Z)],$$

and its **empirical risk** by

$$L_n(h) := \frac{1}{n} \sum_{i=1}^n \ell_h(Z_i).$$

For a distribution P on \mathcal{H} , we write

$$L(P) := \mathbb{E}_{h \sim P}[L(h)]$$
 and $L_n(P) := \mathbb{E}_{h \sim P}[L_n(h)]$

For $m \in [n]$ and random variables Z_1, \ldots, Z_n , we denote $Z_{\leq m} :=$ (Z_1,\ldots,Z_m) and $Z_{\leq m} \coloneqq Z_{\leq m-1}$, with $Z_{\leq 0} = \emptyset$. Similarly, $Z_{\geq m} \coloneqq$ (Z_m,\ldots,Z_n) and $Z_{>m} \coloneqq Z_{>m+1}$, with $Z_{>n+1} = \emptyset$.

A learning algorithm is a map $P : \bigcup_{i=1}^{n} \mathcal{Z}^{i} \to \mathcal{P}(\mathcal{H})$, and an estimator is a map $\hat{h} : \bigcup_{i=1}^{n} \mathbb{Z}^{i} \to \mathcal{H}$. We will abbreviate $P(Z_{\leq n}) \in \mathcal{P}(\mathcal{H})$ to P_{n} , and denote P_0 any prior distribution, with the convention $P(\emptyset) := P_0$.

With a slight abuse of notation, for $m \in [n]$ and estimator \hat{h} , we denote $\hat{h}_{\leq m} := \hat{h}(Z_{\leq m}), \ \hat{h}_{< m} := \hat{h}(Z_{< m}), \ \hat{h}_{\geq m} := \hat{h}(Z_{\geq m}), \ \text{and}$ $\hat{h}_{>m} \coloneqq \hat{h}(Z_{>m}).$

Peter D. Grünwald 2)].

Standard PAC-Bayesian Bounds

Both existing state-of-the-art PAC-Bayesian bounds and ours essentially take the following form; there exists constants $\mathcal{P}, \mathcal{A}, \mathcal{C} \geq 0$, and a function $\epsilon_{\delta,n}$, logarithmic in $1/\delta$ and n, such that for all $\delta \in]0, 1[$, with probability at least $1 - \delta$ over $Z_{< n}$, we have,

$$L(P_{n}) - L_{n}(P_{n}) \leq \mathfrak{P} \cdot \sqrt{\frac{R_{n} \cdot (\operatorname{COMP}_{n} + \varepsilon_{\delta,n})}{n}} + \mathcal{A} \cdot \frac{\operatorname{COMP}_{n} + \varepsilon_{\delta,n}}{n} + \mathfrak{C} \cdot \sqrt{\frac{R_{n}' \cdot \varepsilon_{\delta,n}}{n}}, \qquad (1)$$

For most bounds, $R_n = L_n(P_n)$, $COMP_n = KL(P_n||P_0)$, and $R'_n =$ 0. For the **Tolstikhin and Seldin**'s empirical Bernstein bound $R_n =$ $1/n \cdot \mathbb{E}_{h \sim P_n} \left[\sum_{i=1}^n (\ell_h(Z_i) - L_n(P_n))^2 \right]$ is the empirical variance. For **our bound**, we have $R_n = V_n$ and $R'_n =$

$$COMP_{n} = KL(P_{n} || P(Z_{\leq m})) + KL(P_{n} || P(Z_{>m})),$$

$$V'_{n} \coloneqq \frac{1}{n} \sum_{i=1}^{m} \ell_{\hat{h}_{>i}}(Z_{i})^{2} + \frac{1}{n} \sum_{j=m+1}^{n} \ell_{\hat{h}_{

$$V_{n} \coloneqq \frac{1}{n} \mathop{\mathbb{E}}_{h\sim P_{n}} \left[\sum_{i=1}^{m} (\ell_{h}(Z_{i}) - \ell_{\hat{h}_{>i}}(Z_{i}))^{2} + \sum_{j=m+1}^{n} (\ell_{h}(Z_{j}) - \ell_{\hat{h}_{
(3)$$$$

Informed Priors and Stability

We managed to replace the typical $KL(P_n||P_0)$ term in other bounds by the COMP_n in (2); we are essentially using each half of the data to build "informed priors"; in this case, $P(Z_{\leq m})$ and $P(Z_{>m})$.

When the algorithm *P* is **sufficiently stable**, $COMP_n \ll KL(P_n || P_0)$.

Other bounds can also be applied in a way to replace the KL term by the COMP_n in (2): e.g., an "informed" Maurer's bound becomes:

$$kl(L(P_n), L_n(P_n)) \le \frac{\operatorname{COMP}_n + \ln \frac{4\sqrt{m(n-m)}}{\delta}}{n}, \qquad (4)$$

with probability at least $1 - \delta$, for any fixed $\delta \in]0, 1[$ and $m \in [0..n]$.

A Bound Based on Online Estimators

Our bound is based on the errors of the **online estimators** $(\hat{h}_{>i})$ and $(\hat{h}_{\leq i})$ which converge to the final $(\hat{h}_{\leq n})$ based on the full sample.

If P_n is concentrated around $\hat{h}_{\leq n}$; $\ell_{\hat{h}_{< i}}(Z_j) \simeq \ell_{\hat{h}_{< n}}(Z_j)$, $m < j \leq n$; and $\ell_{\hat{h}_{n}}(Z_i) \simeq \ell_{\hat{h}_{n}}(Z_i), 1 \leq i \leq m$, then $V_n \simeq 0$, leaving in our bound only the **lower order** term $O(COMP_n/n)$ and the **complexityfree** term $O(\sqrt{V'_n/n})$. (The latter is of order $O(\sqrt{L(P_n)/n})$ w.h.p.)

Benjamin Guedj

$$= V'_n$$
, where

Relation to the Excess Risk

Unlike other PAC-Bayesian bounds, ours can be related to excess risk bounds under the Bernstein condition which characterizes the "easiness" of the learning problem:

$$\mathbb{E}_{Z\sim \mathbf{D}}[(\ell_h(Z) - \ell_{h_*}(Z)$$

$$\bar{L}(P_n) + \bar{L}(\hat{h}_{>m}) + \bar{L}(\hat{h}_{\le m})$$

+ $(\text{COMP}_n/n)^{\frac{1}{2-\beta}}$ (log-factors omitted) with high probability, where $\overline{L}(\cdot) := L(\cdot) - L(h_*)$ is the excess risk.

A New Concentration Inequality

Our new PAC-Bayesian bound is based on the following new concentration inequality:

$$\mathbb{E}\left[e^{\eta(\mathbb{E}[X]-X)-\eta c\cdot X^2}\right] \le 1, \quad \text{for all } c \ge \eta \cdot \vartheta(\eta b).$$
(5)

and let $\kappa(x) \coloneqq (e^x - x - 1)/x^2$. For all $\eta > 0$, we have

$$\mathbb{E}\left[e^{\eta(\mathbb{E}[X]-X)-\eta c\cdot\mathbb{E}[X]}\right]$$

Note that the **un-expected Bernstein Lemma** 1 has the X² lifted out of the expectation.

Conclusion and Future Work

The main goal of this paper was to introduce a new PAC-Bayesian bound based on a new proof technique. In future work, we plan to put the bound to real practical use by applying it to deep neural networks.

CWI Inría

L

Definition 1 (Bernstein Condition). A learning problem satisfies the (β, B) -Bernstein condition, for $\beta \in [0, 1]$ and B > 0, if for all $h \in \mathcal{H}$,

 $Z))^{2}] \leq B \cdot \mathbb{E}_{Z \sim \mathbf{D}} [\ell_{h}(Z) - \ell_{h_{*}}(Z)]^{\beta},$

where $h_* \in \arg \inf_{h \in \mathcal{H}} \mathbb{E}_{Z \sim \mathbf{D}}[\ell_h(Z)]$ is a risk minimizer within $\operatorname{cl} \mathcal{H}$.

Theorem 1 (Informal). Let $m = \lceil n/2 \rceil$. Under a (β, B) -Bernstein con*dition, for any learning algorithm P and estimator* \hat{h} *such that* $\hat{h}_{>i} = \hat{h}_{>m}$ and $\hat{h}_{< j} = \hat{h}_{\leq m}$, for $1 \leq i \leq m < j \leq n$, the term $\sqrt{\frac{V_n \cdot \text{COMP}_n}{n}}$ is of order

Lemma 1. [Key result: *un*-expected Bernstein] Let $X \sim D$ be a random variable bounded from above by b > 0 almost surely, and let $\vartheta(u) := (-\ln(1-u) - u)/u^2$. For all $0 < \eta < 1/b$, we have (a)

(b) the result is tight: if $c < \eta \cdot \vartheta(\eta b)$, then $\exists \mathbf{D}$, for which (5) breaks.

Lemma 1 is reminiscent of the following slight variation of Bernstein's inequality; let *X* be any random variable bounded from *below* by -b,

for all $c \ge \eta \cdot \kappa(\eta b)$.