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Contribution

We derive a new second-order (PAC-Bayesian) generalization bound.
The key tool behind the bound is a new empirical Bernstein concen-

\tration inequality. y
: Abstract h

Standard PAC-Bayesian bounds contain a /L, - KL /n term which
dominates unless L, the empirical error, vanishes. We managed to
replace L, by a term V,, which vanishes whenever the employed
learning algorithm is sufficiently stable. The key novelties are:

Informed Priors: We split the data in two and learn a prior from each.
The bound is small when the priors are close (i.e. stable algorithm).

Online Estimators: Our bound has a second order term which is in
the form of a sum of (squared) errors incurred by online estimators.

Connection with Excess Risks: We connect our new PAC-Bayesian
bound with excess risks under a Bernstein condition.

New Concentration Inequality: The key tool we use is a new con-
centration inequality which is like Bernstein’s but with X? outside

\the E. Y
a Setting and Notation A

We consider 7, ...,7Z, 11.d. random variable in Z, with Z; ~ D. Let
H be a hypothesis setand ¢ : H x Z — [0,b], b > 0, be a loss such
that ¢,(Z) := £(h,Z). For h € H, we denote its risk by

L(h) :=Ez.p/4y(Z)],

and its empirical risk by

L (h) = % ieh(zi).

For a distribution P on H, we write

L(P) :=E,_p[L(h)] and L,(P) :=E,_p[L.(h)].

For m € |n| and random variables Z4,...,7Z;,, we denote Z, :
(Z1,...,Zm) and Zop, = Z<y 1, With Z<g = @. Similarly, Z>,, :
(Zm, c ooy Zn) and Z>m — sz_|_1, With Zzn_|_1 — @.

Alearning algorithmisamap P : U, Z! — P(H), and an estimator
isamap h: ", Z' — H. We will abbreviate P(Z,) € P(H) to Py,
and denote Py any prior distribution, with the convention P(Q?) = P,.

and estimator h, we
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g Standard PAC-Bayesian Bounds A

Both existing state-of-the-art PAC-Bayesian bounds and ours essen-
tially take the following form; there exists constants P, A, € > 0, and a
function €; ,,, logarithmic in 1/4 and n, such that for all § €]0, 1|, with
probability at least 1 — § over Z<,;, we have,

R, - (COMPn -+ 85,,4) 4 COMP, + E5n
n | n

R! -
—I_ e i \/ n 85,7/1, (1)

n

L(P,) — Lu(P,) < ?-\/

For most bounds, R, = L,(P,), Compr, = KL(P,||P), and R} =
0. For the Tolstikhin and Seldin’s empirical Bernstein bound R, =
1/n-Epop, Y11 (0y(Z;) — Ly(Py))?] is the empirical variance.

For our bound, we have R,, = V,, and R, = V,, where
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a Relation to the Excess Risk

Unlike other PAC-Bayesian bounds, ours can be related to excess risk
bounds under the Bernstein condition which characterizes the “easi-
ness” of the learning problem:

Definition 1 (Bernstein Condition). A learning problem satisfies the
(B, B)-Bernstein condition, for p € |0,1| and B > 0, if forall h € H,

E_[(64(Z) — 64, (2))] < B-

E E_[0,(2) — t, (2)),

/~D

where hy € arginf, ,, Bz p|{,(Z)] is a risk minimizer within c1 H.

Theorem 1 (Informal). Let m = |n/2|. Under a (B, B)-Bernstein con-
dition, for any learning algorithm P and estimator h such that h~; = hw,,

and hej = h<y, for 1 <i <m <j <n, the term \/V”'C;BMP” is of order

L(P,) + L(hsm) + L(h<y) + (COMP, /1) = (log-factors omitted)

CoMPy, = KL(Py||P(Z<m)) + KL(Py||P(Z>m)), (2)
V=Y 4 (2P Y 4 () 3
=1 j=m+1
1 m n |
Vii=— B |} ((Z) =4 (Z0))* + ) (ta(Z) = 4;_(Z)7] -
noli=1 j=m+1 |
\_ Y,
g Informed Priors and Stability A

We managed to replace the typical KL(P,||Py) term in other bounds
by the COMP,, in (2); we are essentially using each half of the data to
build “informed priors”; in this case, P(Z<y,) and P(Z~,).

When the algorithm P is sufficiently stable, CoMP,, << KL(P,||Py).

Other bounds can also be applied in a way to replace the KL term by
the COMP,, in (2): e.g., an “informed” Maurer’s bound becomes:

COMP,, + In 4\/mf5"_m)

< , (4)

n

KI(L(Py), Ly, (Py))

With a slight abuse of notation, for m € [n]
denote ]Elgm = hW(Z<m), hem = W(Z<p), h>m = h(Z>y), and
\h>m f— h(Z>m) J

\VVith probability at least 1 — J, for any fixed ¢ €]0,1[ and m € [0..n]. y
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A Bound Based on Online Estimators

Our bound is based on the errors of the online estimators (h~;) and
(h<;) which converge to the final (h<;) based on the full sample.

If P, is concentrated around fi<,; €ﬁ<.(Z]') ~ 0, (Zj),m <j<mn
< ; _n
and Z,;l>i(Zi) ~ (; (Z;),1 < i < m, then V,, >~ 0, leaving in our

h<y — —
bound only the lower order term O(COMP,, /n) and the complexity-

\with high probability, where L(-) := L(-) — L(h.) is the excess risk. D

g A New Concentration Inequality A

Our new PAC-Bayesian bound is based on the following new concen-
tration inequality:

Lemma 1. [Key result: un-expected Bernstein] Let X ~ D be a

random variable bounded from above by b > 0 almost surely, and let
H(u) := (—In(1 —u) —u)/u®. Forall 0 < 1 < 1/b, we have (a)

E {e”(E[X]_X)_”C'Xz} <1, forallc>n-0(nb). (5)

(b) the result is tight: if ¢ < 11 - 3(nb), then ID, for which (5) breaks.

Lemma 1 is reminiscent of the following slight variation of Bernstein’s
inequality; let X be any random variable bounded from below by —b,
and let x(x) := (¢¥ —x —1)/x%. For all 7 > 0, we have

\free term O(+/V//n). (The latter is of order O(+/L(P,)/n) w.h.p.) p

E {QW(E[X]_X)_UCE[XZ]} S 1’ for all ¢ Z 1 - K(ﬂb) (6)
Note that the un-expected Bernstein Lemma 1 has the X? lifted out
\of the expectation. D
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Conclusion and Future Work

The main goal of this paper was to introduce a new PAC-Bayesian
bound based on a new proof technique. In future work, we plan to
put the bound to real practical use by applying it to deep neural net-
works.

\_ J




