Learning the Linear Quadratic Regulator from Nonlinear Observations

Zakaria Mhammedi Dylan Foster

Tag Line

We develop **efficient algorithms** with provable sample complexity guarantees for nonlinear control with rich observations.

Overview

We propose a new learning-theoretic framework for rich observation continuous control in which the environment is summarized by a low dimensional continuous latent state, while the agent operates on high-dimensional observations.

We focus our attention on perhaps the simplest instantiation: **the rich** observation linear quadratic regulator (RichLQR), which posits that latent states evolve according to noisy linear equations and that each observation is associated with a latent state by an unknown nonlinear mapping.

We present the first algorithm RichID in this setting with a sample complexity guarantee that is **polynomial in the dimension of the la**tent space and independent of the observation space.

The RichLQR Setting

RichLQR is a continuous control problem described by the following dynamics:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t, \qquad \mathbf{y}_t \sim q(\cdot \mid \mathbf{x}_t),$$

where $(\mathbf{x}_t) \subseteq \mathbb{R}^{d_{\mathbf{x}}}$, (\mathbf{u}_t) , (\mathbf{w}_t) , and $(\mathbf{y}_t) \subseteq \mathbb{R}^{d_{\mathbf{y}}}$ represent the states, actions, noise, and observations, respectively.

Observations. The learner does not directly observe $\mathbf{x}_t \in \mathbb{R}^{d_x}$, instead sees observation $\mathbf{y}_t \in \mathbb{R}^{d_y}$ drawn from an unknown **observation distribution** $q(\cdot | \mathbf{x}_t)$; it might be the case that $d_{\mathbf{x}} \gg d_{\mathbf{y}}$.

Goal. The aim is to choose a policy $\hat{\pi} = (\hat{\pi}_t)$ which selects $\mathbf{u}_t = \mathbf{u}_t$ $\hat{\pi}_t(\mathbf{y}_0, \dots, \mathbf{y}_t)$ based on past and current observations to minimize

$$J_T(\pi) \coloneqq \mathbb{E}_{\pi} \left[\frac{1}{T} \sum_{t=1}^T \mathbf{x}_t^\mathsf{T} Q \mathbf{x}_t + \mathbf{u}_t^\mathsf{T} R \mathbf{u}_t \right],$$

where $Q, R \succ 0$ are quadratic cost matrices.

Main Assumptions:

- **Perfect Decodability.** There exists a decoder $f_{\star} : \mathbb{R}^{d_y} \to \mathbb{R}^{d_x}$ such that $f_{\star}(y) = x$ for all $y \in \text{supp } q(\cdot \mid x)$.
- **Realizability.** The learner's decoder class \mathcal{F} contains the true decoder f_{\star} . (The function class \mathcal{F} is used to decode observations.)
- Noise Process. We assume a Gaussian noise process; i.e. $\mathbf{w}_t \sim$ $\mathcal{N}(0, \mathbf{\Sigma}).$

Max Simchowitz

Is Perfect Decodability Necessary?

While perfect decodability may seem like a strong assumption, we show that without it, the problem can quickly become intractable. Consider the following variant of the model (1):

 $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t, \qquad \mathbf{y}_t = f_{\star}^{-1}$

where ε_t is an independent **mean-zero** output noise; the presence of noise can break perfect-decodability in general.

Theorem 1 (informal). *Consider the dynamics* (2) with $d_x = d_y = d_u =$ T=1 and unit Gaussian noise. For every $\epsilon>0$, the exists an $\mathcal{O}(\epsilon^{-1})$ -*Lipschitz decoder* f_{\star} *and realizable function class* \mathcal{F} *with* $|\mathcal{F}| = 2$ *s.t. any* algorithm requires $\Omega(2^{(1/\epsilon)^{2/3}})$ trajectories to learn an ϵ -optimal decoder.

Main Contribution

Our main contribution is a **new algorithmic principle**, Rich Iterative Decoding, or RichID, which solves the RichLQR problem with sam**ple complexity scaling polynomially** in the latent dimension d_x and $\ln |\mathcal{F}|$. Our main theorem is as follows:

Theorem 2 (Main theorem). Under appropriate regularity conditions on the system parameters and noise process, RichID learns an ϵ -optimal policy $\hat{\pi} = (\hat{\pi}_t)_{t \in [T]}$ for horizon T using $C \cdot (d_{\mathbf{x}} + d_{\mathbf{u}})^1 6T^4 \ln |\mathcal{F}| / \epsilon^6$ trajectories, *where C is a problem-dependent constant*.

Algorithm Overview

Our algorithm RichID consists of three phases.

- In Phase I, we roll in with Gaussian control inputs and learn a good decoder \hat{f} under this roll-in distribution by solving a certain regression problem involving our decoder class \mathcal{F} .
- In Phase II, we use the decoder \hat{f} from Phase 1, to learn a model $(\widehat{A}, \widehat{B})$ for the system dynamics (up to a similarity transform M). Moreover, we can synthesize a controller \widehat{K} so that the controller \mathbf{u}_t = $\widehat{K}\mathbf{x}_t$ is optimal for $(\widehat{A},\widehat{B})$, and thus near-optimal for (A,B).
- In Phase III, we inductively solve a sequence of regression problems, one for each time t = 0, ..., T, to learn a sequence of state decoders (\hat{f}_t) , s.t. for each t, $\hat{f}_t \approx f_{\star}$. Set $\hat{\pi} = (\hat{\pi}_t)$ with $\hat{\pi}_t \equiv \hat{K}\hat{f}_t$.

Why Phase III?

Why not just execute the policy $\hat{\pi} \equiv \hat{K}\hat{f}$ with \hat{f} from Phase I? This decoder is "good" under the state distribution generated by taking **Gaussian random actions** (\mathbf{u}_t) , i.e. $\mathbb{E}_{\mathbf{u}_{1k} \sim \mathcal{N}(0,I)^k} \| \hat{f} - f_{\star} \| \leq (\text{small}).$ This **does not imply** that $\mathbb{E}_{\hat{\pi}} \| \hat{f} - f_{\star} \| \leq (\text{small})$, which is what we want. So we learn (\hat{f}_t) s.t. $\mathbb{E}_{\hat{\pi}_{1:t-1}} \| \hat{f}_t - f_\star \| \leq (\text{small})$, with $\hat{\pi}_t \equiv \hat{K}\hat{f}_t$.

Dipendra Misra Wen Sun Akshay Krishnamurthy Alexander Rakhlin

John Langford

$$^{1}(\mathbf{x}_{t}) + \boldsymbol{\varepsilon}_{t},$$
 (2)

Phase I Overview

Goal. Learn an off-policy decoder \hat{f} .

 $\hat{f} \in \operatorname{argmin}_{\mathcal{F}}$

1. As $n \to \infty$, we have

$$\frac{1}{n}\sum_{i=1}^{n} \left\| f(\mathbf{y}_{k+1}^{(i)}) - \mathbf{u}_{k}^{(i)} \right\|^{2} \to \mathbb{E}\left[\| f(\mathbf{y}_{k+1}) - \mathbf{u}_{k} \|^{2} \right]$$

2. If $f_{\star} \in \operatorname{argmin}_{f \in \mathcal{F}'} \mathbb{E}[\|f(\mathbf{y})\|]$ $f_{\star}(\mathbf{y}_{k+1}) \stackrel{(*)}{=} \mathbb{E}[\mathbf{u}_k | \mathbf{y}_k]$

If $g_{\star} \in \operatorname{argmin}_{q} \mathbb{E}[\|g(Y) - U\|_{2}^{2}]$, then $g_{\star}(Y) = \mathbb{E}[U|Y]$. (**) follows from the perfect decodability assumption. If $(U, X) \sim \mathcal{N}(0, \Sigma)$, then $\mathbb{E}[U|X] = \Sigma_{ux} \Sigma_{xx}^{-1} X$.

Phase II Overview

The decode \hat{f} from Phase I gives an estimator of the **transformed state** $\tilde{\mathbf{x}} = M\mathbf{x}$, which follows the **modified** linear equations:

$$\tilde{\mathbf{x}}_{t+1} = MAM^{\dagger}\tilde{\mathbf{x}}_t + MB\mathbf{u}_t + M\mathbf{w}_t.$$

$$(\widehat{A}, \widehat{B}) \in \operatorname{argmin}_{A', B'} \sum_{i=1}^{n} \left\| \widehat{f}(\mathbf{y}_{k+1}^{(i)}) - A' \widehat{f}(\mathbf{y}_{k}^{(i)}) - B' \mathbf{u}_{k}^{(i)} \right\|^{2}.$$
 (4)

Phase III Overview

$$\mathbb{E}_{\hat{\pi}_{1:t-1}}\left[\left\|\hat{f}_t(\mathbf{y}_{0:t}\right\|\right]$$

• Key idea Predict random Gaussian actions **u**_k from observations. In particular, for an appropriate *k*, we solve the least squares problem:

$$f \in \mathcal{F}' \sum_{i=1}^{n} \left\| f(\mathbf{y}_{k+1}^{(i)}) - \mathbf{u}_{k}^{(i)} \right\|^{2},$$

where the superscript $^{(i)}$ denotes the trajectory index, and \mathcal{F}' is an **augmented** class obtained from *F* through matrix multiplication.

• Key result. $\exists M$ invertible such that $\hat{f}(\mathbf{y}_{k+1}) \approx M\mathbf{x}_{k+1}$. **Question.** Why is $\hat{f}(\mathbf{y}_{k+1}) \approx M\mathbf{x}_{k+1}$? There are two reasons for this:

$$(u_{k+1}) - \mathbf{u}_k \|^2$$
], then

$$\mathbf{x}_{k+1} \stackrel{(**)}{=} \mathbb{E}[\mathbf{u}_{k+1} | \mathbf{x}_{t+1}] \stackrel{(***)}{=} M\mathbf{x}_{k+1}.$$

(*) follows from the Bayes optimal solution of least squares: (***) follows from properties of Gaussian conditional expectations:

Using the decoder \hat{f} , we solve the following least squares problem to obtain estimates $(\widehat{A}, \widehat{B}) \approx (MAM^{\dagger}, MB)$ (recall that $\widehat{f}(\mathbf{y}_k) \approx \widetilde{\mathbf{x}}_k$):

Goal: We will iteratively learn a sequence of decoders (\hat{f}_t) s.t.

 $f_{\star}(\mathbf{y}_t) \|^2 \leq (\text{small}), \forall t,$ (5)

where $\hat{\pi}_s(\mathbf{y}_{0:s}) = \widehat{K}\widehat{f}_s(\mathbf{y}_{0:s})$. This is **enough** by the **performance difference lemma**. See **pre-print** for more details on Phase III.