Learning the Linear Quadratic Regulator from Nonlinear Observations

Zakaria Mhammedi Dylan Foster

Max Simchowitz

g Tag Line A
We develop efficient algorithms with provable sample complexity
\guarantees for nonlinear control with rich observations. y
g Overview A

We propose a new learning-theoretic framework for rich observa-
tion continuous control in which the environment is summarized by
a low dimensional continuous latent state, while the agent operates
on high-dimensional observations.

We focus our attention on perhaps the simplest instantiation: the rich
observation linear quadratic regulator (RichLQR), which posits that
latent states evolve according to noisy linear equations and that each
observation is associated with a latent state by an unknown nonlinear

mapping.

We present the first algorithm RichID in this setting with a sample
complexity guarantee that is polynomial in the dimension of the la-

Dipendra Misra Wen Sun

a s Perfect Decodability Necessary? A

While perfect decodability may seem like a strong assumption, we
show that without it, the problem can quickly become intractable.
Consider the following variant of the model (1):

ye = fi ' (xt) + e, 2)

where ¢; is an independent mean-zero output noise; the presence of
noise can break perfect-decodability in general.

Xt11 = Ax¢ + Buy + wy,

Theorem 1 (informal). Consider the dynamics (2) with dy = dy = dy =

T = 1 and unit Gaussian noise. For every € > 0, the exists an O(e™!)-
Lipschitz decoder f,. and realizable function class F with |F| = 2 s.t. any

\tent space and independent of the observation space. y
g The RichLQR Setting A

RichLOR is a continuous control problem described by the following
dynamics:

X;+1 = Axy + Bu + wy, yt ~ 07(' | Xt), (1)

where (x;) C R%, (u;), (w;), and (y;) C R% represent the states,
actions, noise, and observations, respectively.

Observations. The learner does not directly observe x; € R%, in-

stead sees observation y; € R% drawn from an unknown observa-
tion distribution g(- | x;); it might be the case that dyx > dy.

Goal. The aim is to choose a policy & = (7t;) which selects u; =
7t:(yo, - - -, yt) based on past and current observations to minimize

1 T
?letTth-l-ugRut ;
f—

]T(TC) =,

where Q, R > 0 are quadratic cost matrices.

Main Assumptions:
o Perfect Decodability. There exists a decoder f, : R% — R% such

that f.(y) = x forall y € supp g(- | x).

e Realizability. The learner’s decoder class J contains the true de-
coder f,. (The function class J is used to decode observations.)

Akshay Krishnamurthy Alexander Rakhlin

\algorithm requires Q) (2(1/ €>2/3) trajectories to learn an e-optimal decoder. y

4)

Main Contribution

Our main contribution is a new algorithmic principle, Rich Iterative
Decoding, or RichID, which solves the RichLQR problem with sam-
ple complexity scaling polynomially in the latent dimension d, and
In |F|. Our main theorem is as follows:

Theorem 2 (Main theorem). Under appropriate reqularity conditions on
the system parameters and noise process, RichID learns an e-optimal policy
7t = (7tt) ey for horizon T using C - (dx + du) 6T*In |F|/€® trajectories,

\where C is a problem-dependent constant. y

g Algorithm Overview A

Our algorithm RichID consists of three phases.

e In Phase I, we roll in with Gaussian control inputs and learn a
good decoder f under this roll-in distribution by solving a certain
regression problem involving our decoder class J.

e In Phase II, we use the decoder f from Phase 1, to learn a model
(A, B) for the system dynamics (up to a similarity transform M).
Moreover, we can synthesize a controller K so that the controller u;
— Kx; is optimal for (A,E), and thus near-optimal for (A, B).

e In Phase III, we inductively solve a sequence of regression prob-
lems, one for each time t = 0,..., T, to learn a sequence of state

e Noise Process. We assume a Gaussian noise process; 1.e. Wy ~

. N(0,X).)

John Langford

4)

Phase | Overview
Goal. Learn an off-policy decoder f.

e Keyidea Predict random Gaussian actions uj from observations. In
particular, for an appropriate k, we solve the least squares problem:

j i) |2
i)l

J

n
f € argmin)
1=1

where the superscript (/) denotes the trajectory index, and ” is an
augmented class obtained from J through matrix multiplication.

o Key result. M invertible such that f (Vir1) &= Mxj .

Question. Why is f(yi11) =~ Mxy.1? There are two reasons for this:
1. Asn — oo, we have

1 n

"

— B [|If(yi1) — u]?]

2. If fi € argmin 5 E[[| f(yk+1) — uy||?], then

(%) . (%)
fx(Vir1) = Elug|yry] =

(k%)

= MXj41.

E w1 |Xe+1)

(*) follows from the Bayes optimal solution of least squares:
If g, € argmin, E[[|g(Y) — U 2], then ¢, (Y) = E[U|Y].
(**) follows from the pertect decodability assumption.

(***) tollows from properties of Gaussian conditional expectations:
f (U, X) ~ N(0,Z), then E[U|X] = L, I} X. p
g 2

Phase || Overview

The decode f from Phase I gives an estimator of the transformed state
X = Mx, which follows the modified linear equations:

%1 = MAM'%; + MBu; + Mwy. (3)

Using the decoder f, we solve the following least squares problem to

AN

obtain estimates (A, B) ~ (MAM?, MB) (recall that f(y;) ~ %):

_ decoders (ﬁ), s.t. for each ¢, ft ~ f.. Set 1 = (71;) with 7t; = IZﬁ. D

g Why Phase I11? A

Why not just execute the policy 1 = Kf with f from Phase 1? This
decoder is “good” under the state distribution generated by taking

Gaussian random actions (u;), i.e. E; o)| f— foll < (small).
This does not imply that Ex| f — f.|| < (small), which is what we

~ = . = || 2 (i 2 (i)2
(A,B) € argmin,, 5 Y || f(y])) — A'f(y) - B'u) (4)
_ ! J
g Phase Il Overview A
Goal: We will iteratively learn a sequence of decoders (f;) s.t.
A 2
Bz, 1| fe(yo:r) — f*(Yt)H | < (small), Vt, (5)

where 7s(yo:s) = Kfs(yo:s). This is enough by the performance dif-

\want. So we learn (f;) s.t. Ez,, |t — fil| < (small), with 7t; = Izﬁ./

ference lemma. See pre-print for more details on Phase III. y

https://arxiv.org/abs/2010.03799

