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Tag Line
We develop efficient algorithms with provable sample complexity
guarantees for nonlinear control with rich observations.

Overview
We propose a new learning-theoretic framework for rich observa-
tion continuous control in which the environment is summarized by
a low dimensional continuous latent state, while the agent operates
on high-dimensional observations.

We focus our attention on perhaps the simplest instantiation: the rich
observation linear quadratic regulator (RichLQR), which posits that
latent states evolve according to noisy linear equations and that each
observation is associated with a latent state by an unknown nonlinear
mapping.

We present the first algorithm RichID in this setting with a sample
complexity guarantee that is polynomial in the dimension of the la-
tent space and independent of the observation space.

The RichLQR Setting
RichLQR is a continuous control problem described by the following
dynamics:

xt+1 = Axt + But + wt, yt ∼ q(· | xt), (1)

where (xt) ⊆ Rdx , (ut), (wt), and (yt) ⊆ Rdy represent the states,
actions, noise, and observations, respectively.

Observations. The learner does not directly observe xt ∈ Rdx , in-
stead sees observation yt ∈ Rdy drawn from an unknown observa-
tion distribution q(· | xt); it might be the case that dx � dy.

Goal. The aim is to choose a policy π̂ = (π̂t) which selects ut =
π̂t(y0, . . . , yt) based on past and current observations to minimize

JT(π) := Eπ

[
1
T

T

∑
t=1

xᵀt Qxt + uᵀ
t Rut

]
,

where Q, R � 0 are quadratic cost matrices.

Main Assumptions:
• Perfect Decodability. There exists a decoder f? : Rdy → Rdx such

that f?(y) = x for all y ∈ supp q(· | x).

• Realizability. The learner’s decoder class F contains the true de-
coder f?. (The function class F is used to decode observations.)

• Noise Process. We assume a Gaussian noise process; i.e. wt ∼
N (0, Σ).

Is Perfect Decodability Necessary?
While perfect decodability may seem like a strong assumption, we
show that without it, the problem can quickly become intractable.
Consider the following variant of the model (1):

xt+1 = Axt + But + wt, yt = f−1
? (xt) + εt, (2)

where εt is an independent mean-zero output noise; the presence of
noise can break perfect-decodability in general.

Theorem 1 (informal). Consider the dynamics (2) with dx = dy = du =

T = 1 and unit Gaussian noise. For every ε > 0, the exists an O(ε−1)-
Lipschitz decoder f? and realizable function class F with |F| = 2 s.t. any
algorithm requires Ω(2(1/ε)2/3

) trajectories to learn an ε-optimal decoder.

Main Contribution
Our main contribution is a new algorithmic principle, Rich Iterative
Decoding, or RichID, which solves the RichLQR problem with sam-
ple complexity scaling polynomially in the latent dimension dx and
ln |F|. Our main theorem is as follows:

Theorem 2 (Main theorem). Under appropriate regularity conditions on
the system parameters and noise process, RichID learns an ε-optimal policy
π̂ = (π̂t)t∈[T] for horizon T using C · (dx + du)16T4 ln |F|/ε6 trajectories,
where C is a problem-dependent constant.

Algorithm Overview
Our algorithm RichID consists of three phases.
• In Phase I, we roll in with Gaussian control inputs and learn a

good decoder f̂ under this roll-in distribution by solving a certain
regression problem involving our decoder class F.

• In Phase II, we use the decoder f̂ from Phase 1, to learn a model
(Â, B̂) for the system dynamics (up to a similarity transform M).
Moreover, we can synthesize a controller K̂ so that the controller ut

= K̂xt is optimal for (Â,B̂), and thus near-optimal for (A, B).

• In Phase III, we inductively solve a sequence of regression prob-
lems, one for each time t = 0, . . . , T, to learn a sequence of state
decoders ( f̂t), s.t. for each t, f̂t ≈ f?. Set π̂ = (π̂t) with π̂t ≡ K̂ f̂t.

Why Phase III?
Why not just execute the policy π̂ ≡ K̂ f̂ with f̂ from Phase I? This
decoder is “good” under the state distribution generated by taking
Gaussian random actions (ut), i.e. Eu1k∼N (0,I)k‖ f̂ − f?‖ ≤ (small).

This does not imply that Eπ̂‖ f̂ − f?‖ ≤ (small), which is what we
want. So we learn ( f̂t) s.t. Eπ̂1:t−1‖ f̂t − f?‖ ≤ (small), with π̂t ≡ K̂ f̂t.

Phase I Overview
Goal. Learn an off-policy decoder f̂ .
• Key idea Predict random Gaussian actions uk from observations. In

particular, for an appropriate k, we solve the least squares problem:

f̂ ∈ argmin f∈F′
n

∑
i=1

∥∥∥ f (y(i)
k+1)− u(i)

k

∥∥∥2
,

where the superscript (i) denotes the trajectory index, and F′ is an
augmented class obtained from F through matrix multiplication.

• Key result. ∃M invertible such that f̂ (yk+1) ≈ Mxk+1.
Question. Why is f̂ (yk+1) ≈ Mxk+1? There are two reasons for this:
1. As n→ ∞, we have

1
n

n

∑
i=1

∥∥∥ f (y(i)
k+1)− u(i)

k

∥∥∥2
→ E

[
‖ f (yk+1)− uk‖2

]

2. If f? ∈ argmin f∈F′E[‖ f (yk+1)− uk‖2], then

f?(yk+1)
(∗)
= E[uk|yk+1]

(∗∗)
= E[uk+1|xt+1]

(∗∗∗)
= Mxk+1.

(*) follows from the Bayes optimal solution of least squares:
If g? ∈ argmingE[‖g(Y)−U‖2

2], then g?(Y) = E[U|Y].
(**) follows from the perfect decodability assumption.
(***) follows from properties of Gaussian conditional expectations:
If (U, X) ∼ N (0, Σ), then E[U|X] = ΣuxΣ−1

xx X.

Phase II Overview
The decode f̂ from Phase I gives an estimator of the transformed state
x̃ = Mx, which follows the modified linear equations:

x̃t+1 = MAM†x̃t + MBut + Mwt. (3)

Using the decoder f̂ , we solve the following least squares problem to
obtain estimates (Â, B̂) ≈ (MAM†, MB) (recall that f̂ (yk) ≈ x̃k):

(Â, B̂) ∈ argminA′ ,B′
n

∑
i=1

∥∥∥ f̂ (y(i)
k+1)− A′ f̂ (y(i)

k )− B′u(i)
k

∥∥∥2
. (4)

Phase III Overview
Goal: We will iteratively learn a sequence of decoders ( f̂t) s.t.

Eπ̂1:t−1 [
∥∥∥ f̂t(y0:t)− f?(yt)

∥∥∥2
] ≤ (small), ∀t, (5)

where π̂s(y0:s) = K̂ f̂s(y0:s). This is enough by the performance dif-
ference lemma. See pre-print for more details on Phase III.
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