
Learning the Linear Quadratic Regulator from Nonlinear ObservationsLearning the Linear Quadratic Regulator from Nonlinear Observations
Zakaria Mhammedi Dylan Foster Max Simchowitz Dipendra Misra Wen Sun Akshay Krishnamurthy Alexander Rakhlin John LangfordZakaria Mhammedi Dylan Foster Max Simchowitz Dipendra Misra Wen Sun Akshay Krishnamurthy Alexander Rakhlin John Langford

Tag Line
We develop efficient algorithms with provable sample complexity
guarantees for nonlinear control with rich observations.

Overview
We propose a new learning-theoretic framework for rich observa-
tion continuous control in which the environment is summarized by
a low dimensional continuous latent state, while the agent operates
on high-dimensional observations.

We focus our attention on perhaps the simplest instantiation: the rich
observation linear quadratic regulator (RichLQR), which posits that
latent states evolve according to noisy linear equations and that each
observation is associated with a latent state by an unknown nonlinear
mapping.

We present the first algorithm RichID in this setting with a sample
complexity guarantee that is polynomial in the dimension of the la-
tent space and independent of the observation space.

The RichLQR Setting
RichLQR is a continuous control problem described by the following
dynamics:

xt+1 = Axt + But + wt, yt ∼ q(· | xt), (1)

where (xt) ⊆ Rdx , (ut), (wt), and (yt) ⊆ Rdy represent the states,
actions, noise, and observations, respectively.

Observations. The learner does not directly observe xt ∈ Rdx , in-
stead sees observation yt ∈ Rdy drawn from an unknown observa-
tion distribution q(· | xt); it might be the case that dx � dy.

Goal. The aim is to choose a policy π̂ = (π̂t) which selects ut =
π̂t(y0, . . . , yt) based on past and current observations to minimize

JT(π) := Eπ

[
1
T

T

∑
t=1

xᵀt Qxt + uᵀ
t Rut

]
,

where Q, R � 0 are quadratic cost matrices.

Main Assumptions:
• Perfect Decodability. There exists a decoder f? : Rdy → Rdx such

that f?(y) = x for all y ∈ supp q(· | x).

• Realizability. The learner’s decoder class F contains the true de-
coder f?. (The function class F is used to decode observations.)

• Noise Process. We assume a Gaussian noise process; i.e. wt ∼
N (0, Σ).

Is Perfect Decodability Necessary?
While perfect decodability may seem like a strong assumption, we
show that without it, the problem can quickly become intractable.
Consider the following variant of the model (1):

xt+1 = Axt + But + wt, yt = f−1
? (xt) + εt, (2)

where εt is an independent mean-zero output noise; the presence of
noise can break perfect-decodability in general.

Theorem 1 (informal). Consider the dynamics (2) with dx = dy = du =

T = 1 and unit Gaussian noise. For every ε > 0, the exists an O(ε−1)-
Lipschitz decoder f? and realizable function class F with |F| = 2 s.t. any
algorithm requires Ω(2(1/ε)2/3

) trajectories to learn an ε-optimal decoder.

Main Contribution
Our main contribution is a new algorithmic principle, Rich Iterative
Decoding, or RichID, which solves the RichLQR problem with sam-
ple complexity scaling polynomially in the latent dimension dx and
ln |F|. Our main theorem is as follows:

Theorem 2 (Main theorem). Under appropriate regularity conditions on
the system parameters and noise process, RichID learns an ε-optimal policy
π̂ = (π̂t)t∈[T] for horizon T using C · (dx + du)16T4 ln |F|/ε6 trajectories,
where C is a problem-dependent constant.

Algorithm Overview
Our algorithm RichID consists of three phases.
• In Phase I, we roll in with Gaussian control inputs and learn a

good decoder f̂ under this roll-in distribution by solving a certain
regression problem involving our decoder class F.

• In Phase II, we use the decoder f̂ from Phase 1, to learn a model
(Â, B̂) for the system dynamics (up to a similarity transform M).
Moreover, we can synthesize a controller K̂ so that the controller ut

= K̂xt is optimal for (Â,B̂), and thus near-optimal for (A, B).

• In Phase III, we inductively solve a sequence of regression prob-
lems, one for each time t = 0, . . . , T, to learn a sequence of state
decoders ( f̂t), s.t. for each t, f̂t ≈ f?. Set π̂ = (π̂t) with π̂t ≡ K̂ f̂t.

Why Phase III?
Why not just execute the policy π̂ ≡ K̂ f̂ with f̂ from Phase I? This
decoder is “good” under the state distribution generated by taking
Gaussian random actions (ut), i.e. Eu1k∼N (0,I)k‖ f̂ − f?‖ ≤ (small).

This does not imply that Eπ̂‖ f̂ − f?‖ ≤ (small), which is what we
want. So we learn ( f̂t) s.t. Eπ̂1:t−1‖ f̂t − f?‖ ≤ (small), with π̂t ≡ K̂ f̂t.

Phase I Overview
Goal. Learn an off-policy decoder f̂ .
• Key idea Predict random Gaussian actions uk from observations. In

particular, for an appropriate k, we solve the least squares problem:

f̂ ∈ argmin f∈F′
n

∑
i=1

∥∥∥ f (y(i)
k+1)− u(i)

k

∥∥∥2
,

where the superscript (i) denotes the trajectory index, and F′ is an
augmented class obtained from F through matrix multiplication.

• Key result. ∃M invertible such that f̂ (yk+1) ≈ Mxk+1.
Question. Why is f̂ (yk+1) ≈ Mxk+1? There are two reasons for this:
1. As n→ ∞, we have

1
n

n

∑
i=1

∥∥∥ f (y(i)
k+1)− u(i)

k

∥∥∥2
→ E

[
‖ f (yk+1)− uk‖2

]

2. If f? ∈ argmin f∈F′E[‖ f (yk+1)− uk‖2], then

f?(yk+1)
(∗)
= E[uk|yk+1]

(∗∗)
= E[uk+1|xt+1]

(∗∗∗)
= Mxk+1.

(*) follows from the Bayes optimal solution of least squares:
If g? ∈ argmingE[‖g(Y)−U‖2

2], then g?(Y) = E[U|Y].
(**) follows from the perfect decodability assumption.
(***) follows from properties of Gaussian conditional expectations:
If (U, X) ∼ N (0, Σ), then E[U|X] = ΣuxΣ−1

xx X.

Phase II Overview
The decode f̂ from Phase I gives an estimator of the transformed state
x̃ = Mx, which follows the modified linear equations:

x̃t+1 = MAM†x̃t + MBut + Mwt. (3)

Using the decoder f̂ , we solve the following least squares problem to
obtain estimates (Â, B̂) ≈ (MAM†, MB) (recall that f̂ (yk) ≈ x̃k):

(Â, B̂) ∈ argminA′ ,B′
n

∑
i=1

∥∥∥ f̂ (y(i)
k+1)− A′ f̂ (y(i)

k )− B′u(i)
k

∥∥∥2
. (4)

Phase III Overview
Goal: We will iteratively learn a sequence of decoders ( f̂t) s.t.

Eπ̂1:t−1 [
∥∥∥ f̂t(y0:t)− f?(yt)

∥∥∥2
] ≤ (small), ∀t, (5)

where π̂s(y0:s) = K̂ f̂s(y0:s). This is enough by the performance dif-
ference lemma. See pre-print for more details on Phase III.

https://arxiv.org/abs/2010.03799

